Cray HPCS Productivity
Features

Joint NERSC/OLCF/NICS
Cray XT5 Workshop
February 1-3, 2010

Margaret Cahir
Cray, Inc.

NNNNNNNNNNNNNNNNNNNNNNN

CRANY

Agenda

= Background on the Productivity Efforts

= 2 Productivity Tools/Features

* ATP (Abnormal Termination Processing)
* APA (Automatic Profiling Analysis)

= Assessing Productivity Improvements

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure

Productivity Background

= The problem: Large-scale scientific computers are

getting larger and faster, but also more complex and more
difficult to use
Complexity is especially challenging to new users

= HPCS Phase Ill Program specifically calls for

Improvements in developer productivity

This is completely separate from hardware performance
Improvements

Embodied in a set of 5 workflows. Developer productivity comes
Into play in 3 of them:

Writing large (multi-module) codes

Writing small codes

Porting codes

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 3

Level 1 Functional Workflows

(1) Writing Large Multi-Module Codes

Formulate Develop ' Develop \
guestions Approach

Code

3) Running Codes

Iroduction' Analyze
Runs Results
I

", Writing Small Codes
2)
;

(4) Porting Code

Identify Change
Rifference Code

:

(5) Administration

Problem Resource Security HW/SW
Resolutio lanageme Janageme Upgrade

* Workflows comprise many steps; many overlapping
°* |temin red represent areas with highest HPC specific interest

Decide;
ypothesize

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 4

Productivity Feature Work

= Cray Is Implementing a variety of new software and

hardware features aimed at improving productivity

System Administration
= |dentifying problems
= upgrading system software
Writing new codes
= Chapel language
“global-view” language, designed for parallel programming
See chapel.cray.com for more information
Compiling, Optimization and Debugging
= Many features.... Luiz’s talk will cover this
= Includes ATP and APA

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 5

Feature Assessments and Workflows

= Assess individual features or
tools for their contribution to
improving developer
productivity

* Compare how much time/effort
when using the tool or feature
vs. what effort was involved in
the 2002 timeframe

Will apply those improvements
towards the workflows

Starting with evaluations of 2

features:
* ATP — a debug tool

* APA - a feature of the
performance analysis tool
(CrayPat)

2/02/2010

Workflow 4: Porting
Baseline Cascade
Section Step Scenario [Time per |# Passes [Time per [# Passes
pass pass
Modify compile
flag
Modify include | Compile w/ | o | 465 | Hour | 1to2
flags porting
Identify Modify library
Differences paths
Change math | Sci le_ba5|c Hour 1t02 Hour 1t02
calls porting
Change comm.
calls
. Compile .
Compile w/debugging Hours Minutes
Change Code Debug Debue TOOIS: Hours 3to5 Hour 1to 2
Porting
Mintues to Minutes to
Test
Hours Hours
Perf Tools:
Sgaliem?;g Run serial Optimize Hours 4 Hours 2
P sequential code|
Run parallel Perf Tools:
Optimize Day 4 Hours 3
Optimize parallel code
Total (min # passes) ” ”?
Total (max # passes) 7 7

Simplified Example of a Porting Workflow

Cray Inc. Proprietary — Not For Public Disclosure

ATP — Abnormal Termination Processing

= The Problem: When a parallel application dies, it is next to

Impossible to examine all the core files and backtraces
Core files

= A single core file is usually not enough to debug
= Sufficient storage for all core files is a problem
Backtraces

= A single backtrace is usually not enough

= The backtrace produced might not be from the process that first failed
= Today’s systems produce one or none

= ATP produces a single merged stack trace or reduced set of

core files. The benefits:

Easy to navigate the merged stack trace
Manageable set of core files
Reduced amount of data saved

= Especially true in the core file situation

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 7

Simplified Workflow — Major Steps

Write Iterate until you |
Modify / have a clean build
Port

lterate until you

\ / have a clean execution

lterate until results

Compile
& Link

Execute

/ are correct
(verification) \
Iterate until perf

| Debug \ /goals met
| Optimize \

Execute
(production)

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 8

Simplified Workflow with ATP

Write
Modify
Port -
ATP operates during
Complle
& Link

\\ ,,,,,,,,,,,,,, program execution
TN T

Execute

| (verification) N
| Debug \

| Optimize

Execute
(production)

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 9

CRANY

ATP — Abnormal Termination Processing

Write
Modify ——_
Port

L Compile

Termination -

=

& Link Normal
_ Termination
fD\Eb -

Abnormal

| Optimize T~

Jogans
e

Abnormal

Termination _

2/02/2010

=

Cray Inc. Proprietary — Not For Public Disclosure 10

ATP — How It Works

= ATP signal handler runs within an application. Its job is to

catch fatal errors. It handles the following signals:

SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS,
SIGSEGYV, SIGSYS, SIGXCPU, SIGXFSZ

Setting the environment variables MPICH_ABORT_ON_ ERROR
and SHMEM_ABORT_ON_ERROR will cause a signal to be thrown
and captured for MPI and SHMEM fatal errors

= ATP daemon running on the compute node captures

signals, starts termination processing

Rest of the application processes are notified
Generates a stacktrace
Creates a file named *.dot

= The *.dot file is viewed with the STATview tool
Pre-release of STATview is available on workshop systems

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 11

| cRANY

STATview Example

File Edit View

| Hide Longest Shortest Single EQ
I [E [45) ? ﬁ v Path Path Task Classes

Open Save As

atpMergedBT.dot |

Command History
Hide MPI

Undo Redo Original Traverse Task

3:00-1,3] 1:[2]

1:2]

210,3] 11]

2:[0,3] 1:1]

1:[3] 1:[0]

level2_1_@callme.f90:104
1:3] 1:[0]

level3_1_@callme.f90:131
1:[3] 1:[0]

rroulette @callme.f90:145

‘@ Applications Places Desktope 2 E@E

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure

Original Graph
Hide MPI

T O\, = tg Mon Jan 25, 426 Pm (T3]

12

ATP — Future Features

= Automatic invocation of ATP

Today users need to insert signal handler

With next release of OS, just need to load atp module
= Core file subset

Intelligence from stack backtrace help decides which core files to
produce

= Hold a dying application in stasis
Gives the user an opportunity to attach a debugger to the application

= Send email notification to user that job has failed

= Improved scalability

ATP stack backtraces have been produced on applications made up
of about 2000 processes

Expect to be able to handle applications with 100,000s of processes
In the future

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 13

ATP — Getting Started

= Get atp_example.tar from the Workshop website
$ wget http://www.nersc.gov/projects/workshops/CrayXT/tbd

S tar —xvi atp example.tar

= On a Cray XT with atp installed, type:
S module load xt-atp
S module load stat
$ man intro atp

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 14

http://www.nersc.gov/projects/workshops/CrayXT/

APA — Automatic Profile Analysis

= The Problem: performance tools have many options and it

can be a lot of work to set up options to profile a program
with minimum overhead

= APA is an option that automatically creates a template file
that can be used to set up a performance profile of the run

" The Benefits:

You can quickly and efficiently generate a performance profile

= Automatically excludes those routines which took a small amount of time
to reduce runtime overhead

= Automatically specifies hardware counter groups
= Automatically lists which libraries to profile

You do not need to wade through pages of documentation in order to
do this

The template (.apa) file can subsequently be modified to refine the
performance data collection

= Also serves as usage documentation

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 15

Simplified Workflow with APA

Write
Modify
Port
| Compile

& Link \
Execute APA used here
(verification) \

.
N -
~~~~~~

“ | Execute
(production)

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 16



APA - How It Works -~

| Optimize
/ myprog / ) pat_build ,T\’ ”\/
v -O filename.apa e »
pat_build v
| -O apa myprog+apa
¥ !
myprog+pat aprun
" (execute)
| aprun ik
— / xtiile /
/ xtiile / \
‘1' """"""""""""""""""" pat_report

| pat_report

.apa
Performance |  User analyzes
\ll _____________________ report this report
: User can . )
Performance modify this
report template file

2/02/2010

e \ I ~.
- -
- N
-~ ~
e

Cray Inc. Proprietary — Not For Public Disclosure

17



APA — Subsequent Iterations "

| Optimize
A R S S \
5 N t_build = 7S
myprog ; pat_bui i (o,
/ \% / | —O filename.apa i Moo
| pat_build | J
-O apa myprog+apa
: s !
myprog+pat aprun
\l/ ! (execute)

| aprun

v
(exej/:ute) / Xf file /
/ xtfile / Y

}

pat_report

2

| pat_report
Performance
l report

Performance _
report 5 Modify
.apa

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 18



APA - How It Works

= User first instruments code with pat build -0 apa
Straightforward and requires little overhead when running

= User executes the application

The information needed to make a profile run is generated and
produced in a file with the extension .apa

= Reinstrument the code (using .apa file)
= Rerun the code (produces .xf file)
= Produce the profile report

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 19



APA - Getting Started

= Get apa_example.tar from the Workshop website

$ wget http://www.nersc.gov/projects/workshops/CrayXT/tbd
$ tar —xvf apa example.tar

= Alternatively:

° See Section 2.4 Using Automatic Program Analysis in the manual
Using Cray Performance Analysis Tools S-2376-50

° Available on the docs.cray.com website

= Another alternative:
$ module load xt-craypat
$ man intro craypat

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 20


http://www.nersc.gov/projects/workshops/CrayXT/
http://www.nersc.gov/projects/workshops/CrayXT/
http://www.nersc.gov/projects/workshops/CrayXT/

CRANY

Feature Assessments

= Objective Is to answer the following questions:
Does this feature help boost the productivity of developers?
How much does it help?
How easy was it to learn how to use the feature?

= We asking users to try out these features and report back on
their experience

= We are providing:
Quick, get-started guide for each feature which includes
= Feature description
= Feature benefit
= How to
Simple example
= Includes a shell script which walks through the steps

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 21



Feedback

= How and when
* Fill in provided feedback forms during workshop
* Talk to us during Hands-on time

* Contact us via email
= Margaret Cahir nl3671@cray.com
= Don Mason dmm@cray.com

= Would like to gather initial impressions of new tools and

features
° How easy it was to learn
* How useful will it be
° Time spent is of interest

2/02/2010 Cray Inc. Proprietary — Not For Public Disclosure 22


mailto:n13671@cray.com

